A.階段性
B.發(fā)展性
C.整體性
D.可操作性
您可能感興趣的試卷
你可能感興趣的試題
A.基本思想
B.基本價(jià)值
C.基本意義
D.基本技能
A.熟記定律定理
B.定律定理的應(yīng)用
C.算法
D.算理
A.結(jié)果性目標(biāo)
B.過程性目標(biāo)
C.結(jié)果性目標(biāo)和過程性目標(biāo)
D.不是教學(xué)目標(biāo)
A.運(yùn)算法則
B.數(shù)學(xué)性質(zhì)
C.數(shù)學(xué)定律
D.數(shù)學(xué)公式
A.演繹推理
B.完全歸納推理
C.不完全歸納推理
D.統(tǒng)計(jì)推理
最新試題
奧蘇伯爾根據(jù)學(xué)習(xí)的內(nèi)容與深度將學(xué)習(xí)分為()
小學(xué)生的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)主要來自于()。
小學(xué)數(shù)學(xué)教學(xué)“三維目標(biāo)”中的“過程與方法目標(biāo)”對(duì)應(yīng)于“四基”中的()。
使用“會(huì)用自己選擇的量具測(cè)量物體的長度”、“能夠準(zhǔn)確計(jì)算圓的面積”等語句陳述知識(shí)與技能的教學(xué)目標(biāo),體現(xiàn)出教學(xué)目標(biāo)設(shè)計(jì)的()原則。
教學(xué)設(shè)計(jì)的前提是研究()
不屬于推理的主要類型的是()。
小學(xué)數(shù)學(xué)教學(xué)的“四基”是指()。
加涅認(rèn)為,學(xué)習(xí)過程一般要經(jīng)歷四個(gè)階段:理解階段、習(xí)得階段、儲(chǔ)存階段和()
在講授小學(xué)四年級(jí)數(shù)學(xué)“乘法分配律”時(shí),推導(dǎo)出“乘法分配律”的方法是()。
在小學(xué)數(shù)學(xué)教材中,幾乎每一課時(shí)都呈現(xiàn)情景圖,這體現(xiàn)出小學(xué)數(shù)學(xué)的()。