您可能感興趣的試卷
你可能感興趣的試題
A為三階矩陣,λ1,λ2,λ3為其特征值,=0的充分條件是()。
A.∣λ1∣=1,∣λ2∣〈1,∣λ3∣〈1
B.∣λ1∣〈1,∣λ2∣=∣λ3∣=1
C.∣λ1∣〈1,∣λ2∣〈1,∣λ3∣〈1
D.∣λ1∣=∣λ2∣=∣λ3∣=1
A.λ1=λ2時(shí),x1,x2一定成比例
B.λ1≠λ2時(shí),λ3=λ1+λ2也是A的特征值,且對(duì)應(yīng)的特征向量為x1+x2
C.λ1≠λ2時(shí),x1+x2不可能是A的特征向量
D.λ1=0時(shí),有x1=0
A.A的n個(gè)特征向量?jī)蓛烧?br />
B.A的n個(gè)特征向量組成單位正交向量組
C.A的k重特征值λ0,有r(λ0E-A)=n-k
D.A的k重特征值λ0,有r(λ0E-A)=k
設(shè)矩陣A與B相似,其中A=,已知矩陣B有特征值1,2,3,則x=()。
A.4
B.-3
C.-4
D.3
最新試題
關(guān)于初等矩陣下列結(jié)論成立的是()
設(shè)A是m×n矩陣,B是n×m矩陣,且丨BA丨=0,則必有n>m。()
已知n階行列式=0,則下列表述正確的是()。
設(shè)A為四階方陣,且滿足秩r(A)+秩r(A·E)=4,則A2=()。
向量組的一個(gè)極大線性無(wú)關(guān)組可以取為()
設(shè)A為3階實(shí)對(duì)稱(chēng)矩陣,向量ξ1=(1,2,5)T,ξ2=(k,2k,3)T分別對(duì)應(yīng)于特征值2和3的特征向量,則k=()。
求方程組的基礎(chǔ)解系和通解。
設(shè)R3的基為α1=,α2=,α3=,則β=在基{α1,α2,α3}下的坐標(biāo)為()。
已知向量組α1=(1,1,1),α2=(2,2,2),α3=(3,3,3),α4=(0,0,1),α5=(1,2,3)。(1)求該向量組的秩;(2)求該向量組的一個(gè)極大線性無(wú)關(guān)組。
設(shè)α1,α2,…,αs∈Rn,該向量組的秩為r,則對(duì)于s和r,當(dāng)()時(shí)向量組線性無(wú)關(guān);當(dāng)()時(shí)向量組線性相關(guān)。