填空題在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測(cè)得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為()海里。

您可能感興趣的試卷

你可能感興趣的試題

1.問(wèn)答題

高中"等差數(shù)列"設(shè)定的教學(xué)目標(biāo)如下:
①通過(guò)實(shí)例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項(xiàng)公式;
②能在具體的問(wèn)題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題,體會(huì)等差數(shù)列與一次函數(shù)的關(guān)系:
③讓學(xué)生對(duì)日常生活中的實(shí)際問(wèn)題進(jìn)行分析,引導(dǎo)學(xué)生通過(guò)觀察,推導(dǎo),歸納抽象出等差數(shù)列的概念:由學(xué)生建立等差數(shù)列模型用相關(guān)知識(shí)解決一些簡(jiǎn)單的問(wèn)題,進(jìn)行等差數(shù)列通項(xiàng)公式應(yīng)用的實(shí)踐操作并在操作過(guò)程中,通過(guò)類比函數(shù)概念、性質(zhì)、表達(dá)式得到對(duì)等差數(shù)列相應(yīng)問(wèn)題的研究。完成下列任務(wù):
(1)根據(jù)教學(xué)目標(biāo)①,給出至少三個(gè)實(shí)例,并說(shuō)明設(shè)計(jì)意圖;
(2)根據(jù)教學(xué)目標(biāo)②,設(shè)計(jì)至少兩個(gè)問(wèn)題,讓學(xué)生用等差數(shù)列求解,并說(shuō)明設(shè)計(jì)意圖;
(3)確定本節(jié)課的教學(xué)重點(diǎn);
(4)作為高中階段的重點(diǎn)內(nèi)容,其難點(diǎn)是什么?
(5)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?

5.問(wèn)答題

高中"方程的根與函數(shù)的零點(diǎn)"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:
①通過(guò)對(duì)二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會(huì)函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,
②理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。
③通過(guò)對(duì)現(xiàn)實(shí)問(wèn)題的分析,體會(huì)用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動(dòng)與靜的辨證關(guān)系。掌握函數(shù)零點(diǎn)存在性的判斷。
完成下列任務(wù):
(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)問(wèn)題引入,并說(shuō)明設(shè)計(jì)意圖;
(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)問(wèn)題鏈(至少包含三個(gè)問(wèn)題),并說(shuō)明設(shè)計(jì)意圖;
(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個(gè)實(shí)例和三個(gè)問(wèn)題,并說(shuō)明設(shè)計(jì)意圖;
(4)確定本節(jié)課的教學(xué)重點(diǎn);
(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點(diǎn)是什么?
(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?

最新試題

已知直線l:ax+y=1在矩陣對(duì)應(yīng)的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實(shí)數(shù)a,b的值;(2)若點(diǎn)P(x0,y0),在直線l上,且,求點(diǎn)P的坐標(biāo)。

題型:?jiǎn)柎痤}

在三角形ABC中,∠BAC=90°,AB=AC,若點(diǎn)D在線段BC上,以AD為邊長(zhǎng)作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。(1)若點(diǎn)D在BC延長(zhǎng)線上,其他條件不變,寫(xiě)出∠AFC,∠ACB,∠DAC的關(guān)系,并結(jié)合圖2給出證明。(2)若點(diǎn)D在CB延長(zhǎng)線上,其他條件不變,直接寫(xiě)出∠AFC,∠ACB,∠DAC的關(guān)系式。

題型:?jiǎn)柎痤}

在高中數(shù)學(xué)課程中為什么要講微積分初步?

題型:?jiǎn)柎痤}

案例:某教師在對(duì)基本初等函數(shù)進(jìn)行教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:?jiǎn)栴}:(1)指出該生解題過(guò)程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。

題型:?jiǎn)柎痤}

已知,,(1)求tan2α的值:(2)求β。

題型:?jiǎn)柎痤}

已知a=1,b=2。(1)若a∥b,求a·b;(2)若a、b的夾角為60°,求a+b;(3)若a-b與a垂直,求當(dāng)k為何值時(shí),(ka-b)⊥(a+2b)。

題型:?jiǎn)柎痤}

在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測(cè)得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為()海里。

題型:填空題

案例:閱讀下列兩位教師的教學(xué)過(guò)程。教師甲的教學(xué)過(guò)程:師:在一個(gè)風(fēng)雨交加的夜里,從某水庫(kù)閘房到防洪指揮部的電話線路發(fā)生了故障。這是一條10km長(zhǎng)的線路,如何迅速查出故障所在?如果沿著線路一小段一小段查找,困難很多。每查一個(gè)點(diǎn)要爬一次10km長(zhǎng)的電線桿子,大約有200多根電線桿子呢。想一想,維修線路的工人師傅怎樣工作最合理?生1:直接一個(gè)個(gè)電線桿去尋找。生2:先找中點(diǎn),縮小范圍,再找剩下來(lái)一半的中點(diǎn)。師:生2的方法是不是對(duì)呢?我們一起來(lái)考慮一下。如圖,維修工人首先從中點(diǎn)C查,用隨身帶的話機(jī)向兩個(gè)端點(diǎn)測(cè)試時(shí),發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點(diǎn)D,這次發(fā)現(xiàn)BD段正常,可見(jiàn)故障在CD段,再到CD中點(diǎn)E來(lái)查。每查一次,可以把待查的線路長(zhǎng)度縮減一半,如此查下去,不用幾次,就能把故障點(diǎn)鎖定在一兩根電線桿附近。師:我們可以用一個(gè)動(dòng)態(tài)過(guò)程來(lái)展示一下(展示多媒體課件)。在一條線段上找某個(gè)特定點(diǎn),可以通過(guò)取中點(diǎn)的方法逐步縮小特定點(diǎn)所在的范圍(即二分法思想)。教師乙的教學(xué)過(guò)程:師:大家都看過(guò)李詠主持的《幸運(yùn)52》吧,今天咱也試一回(出示游戲:看商品、猜價(jià)格)。生:積極參與游戲,課堂氣氛活躍。師:競(jìng)猜中,"高了"、"低了"的含義是什么?如何確定價(jià)格的最可能的范圍?生:主持人"高了、低了"的回答是判斷價(jià)格所在區(qū)間的依據(jù)。師:如何才能更快的猜中商品的預(yù)定價(jià)格?生:回答各異。老師由此引導(dǎo)學(xué)生說(shuō)出"二分法"的思想,并向同學(xué)們引出二分法的概念。問(wèn)題:(1)分析兩種情景引入的特點(diǎn)。(2)結(jié)合案例,說(shuō)明為什么要學(xué)習(xí)用二分法求方程的近似解。

題型:?jiǎn)柎痤}

請(qǐng)以"三角函數(shù)的積化和差與和差化積"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo);(2)教學(xué)重點(diǎn)、難點(diǎn);(3)教學(xué)過(guò)程(只要求寫(xiě)出新課導(dǎo)入和新知探究、鞏固、應(yīng)用等)及設(shè)計(jì)意圖。

題型:?jiǎn)柎痤}

如何處理面向全體學(xué)生與關(guān)注學(xué)生個(gè)體差異的關(guān)系?

題型:?jiǎn)柎痤}