您可能感興趣的試卷
你可能感興趣的試題
A.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧n0有:0≦f(n)≦cg(n)}
B.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧0有:0≦g(n)≦(n)}
C.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦f(n)<cg(n)}
D.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦cg(n)<f(n)}
A.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧n0有:0≦f(n)≦cg(n)}
B.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧0有:0≦g(n)≦(n)}
C.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦f(n)<cg(n)}
D.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦cg(n)<f(n)}
A.NP={L∣L是一個能在非多項式時間內(nèi)被一臺NDTM所接受的語言}
B.NP={L∣L是一個能在非多項式時間內(nèi)被一臺DTM所接受的語言}
C.NP={L∣L是一個能在多項式時間內(nèi)被一臺DTM所接受的語言}
D.NP={L∣L是一個能在多項式時間內(nèi)被一臺NDTM所接受的語言}
A.k帶圖靈機處理所有長度為n的輸入時,在某條帶上所使用過的最大方格數(shù)
B.k帶圖靈機處理所有長度為n的輸入時,在k條帶上所使用過的方格數(shù)的總和
C.k帶圖靈機處理所有長度為n的輸入時,在k條帶上所使用過的平均方格數(shù)
D.k帶圖靈機處理所有長度為n的輸入時,在某條帶上所使用過的最小方格數(shù)
A.廣度優(yōu)先分支限界法與深度優(yōu)先分支限界法
B.隊列式(FIFO)分支限界法與堆棧式分支限界法
C.排列樹法與子集樹法
D.隊列式(FIFO)分支限界法與優(yōu)先隊列式分支限界法
A.產(chǎn)生x[k]的時間
B.滿足顯約束的x[k]值的個數(shù)
C.問題的解空間的形式
D.計算上界函數(shù)bound的時間
E.滿足約束函數(shù)和上界函數(shù)約束的所有x[k]的個數(shù)
F.計算約束函數(shù)constraint的時間
A.
B.
C.
D.
A.廣度優(yōu)先
B.活結(jié)點優(yōu)先
C.擴展結(jié)點優(yōu)先
D.深度優(yōu)先
最新試題
已知非齊次遞歸方程:其中,b、c是常數(shù),g(n)是n的某一個函數(shù)。則f(n)的非遞歸表達式為:現(xiàn)有Hanoi塔問題的遞歸方程為:,求h(n)的非遞歸表達式。
描述0-1背包問題。
簡單描述分治法的基本思想。
舉反例證明0/1背包問題若使用的算法是按照pi/wi的非遞減次序考慮選擇的物品,即只要正在被考慮的物品裝得進就裝入背包,則此方法不一定能得到最優(yōu)解(此題說明0/1背包問題與背包問題的不同)。
以深度優(yōu)先方式系統(tǒng)搜索問題解的算法稱為()。
用回溯法解問題時,應明確定義問題的解空間,問題的解空間至少應包含()。
算法的復雜性有()和()之分,衡量一個算法好壞的標準是()。
用貪心算法設計0-1背包問題。要求:說明所使用的算法策略;寫出算法實現(xiàn)的主要步驟;分析算法的時間。
何謂P、NP、NPC問題?
若n=4,在機器M1和M2上加工作業(yè)i所需的時間分別為ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4個作業(yè)的最優(yōu)調(diào)度方案,并計算最優(yōu)值。