設(shè)則必有()。
A.AP1P2=B
B.AP2P1=B
C.P1P2A=B
D.P2P1A=B
您可能感興趣的試卷
你可能感興趣的試題
A.算法初步
B.基本初等函數(shù)Ⅱ(三角函數(shù))
C.平面上的向量
D.三角恒等變換
數(shù)列極限()。
A.A
B.B
C.C
D.D
袋中有5個(gè)黑球,3個(gè)白球,大小相同,一次隨機(jī)地摸出4個(gè)球,其中恰有3個(gè)白球的概率為()。
A.A
B.B
C.C
D.D
A.14
B.15
C.16
D.17
A.A-1+B-1
B.A+B
C.A(A+B.-1B
D.(A+B.-1
最新試題
設(shè)f(x),g(x)在[a,b]上連續(xù),且滿足
一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長(zhǎng)為,求圓的方程。
已知a=1,b=2。(1)若a∥b,求a·b;(2)若a、b的夾角為60°,求a+b;(3)若a-b與a垂直,求當(dāng)k為何值時(shí),(ka-b)⊥(a+2b)。
高中"隨機(jī)抽樣"設(shè)定的教學(xué)目標(biāo)如下:①通過對(duì)具體的案例分析,逐步學(xué)會(huì)從現(xiàn)實(shí)生活中提出具有一定價(jià)值的統(tǒng)計(jì)問題;②結(jié)合具體的實(shí)際問題情境,理解隨機(jī)抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)至少兩個(gè)問題,并說明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,給出至少兩個(gè)實(shí)例,并說明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,設(shè)計(jì)問題鏈(至少包含兩個(gè)問題),并說明設(shè)計(jì)意圖;(4)相對(duì)義務(wù)教育階段的統(tǒng)計(jì)教學(xué),本節(jié)課的教學(xué)重點(diǎn)是什么?(5)作為高中階段的起始課,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
在三角形ABC中,∠BAC=90°,AB=AC,若點(diǎn)D在線段BC上,以AD為邊長(zhǎng)作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。(1)若點(diǎn)D在BC延長(zhǎng)線上,其他條件不變,寫出∠AFC,∠ACB,∠DAC的關(guān)系,并結(jié)合圖2給出證明。(2)若點(diǎn)D在CB延長(zhǎng)線上,其他條件不變,直接寫出∠AFC,∠ACB,∠DAC的關(guān)系式。
為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實(shí)際相結(jié)合的原則?
已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)D,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:(1)求C1、C2的標(biāo)準(zhǔn)方程:(2)請(qǐng)問是否存在直線L滿足條件:①過C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。
案例:閱讀下列兩位教師的教學(xué)過程。教師甲的教學(xué)過程:師:在一個(gè)風(fēng)雨交加的夜里,從某水庫閘房到防洪指揮部的電話線路發(fā)生了故障。這是一條10km長(zhǎng)的線路,如何迅速查出故障所在?如果沿著線路一小段一小段查找,困難很多。每查一個(gè)點(diǎn)要爬一次10km長(zhǎng)的電線桿子,大約有200多根電線桿子呢。想一想,維修線路的工人師傅怎樣工作最合理?生1:直接一個(gè)個(gè)電線桿去尋找。生2:先找中點(diǎn),縮小范圍,再找剩下來一半的中點(diǎn)。師:生2的方法是不是對(duì)呢?我們一起來考慮一下。如圖,維修工人首先從中點(diǎn)C查,用隨身帶的話機(jī)向兩個(gè)端點(diǎn)測(cè)試時(shí),發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點(diǎn)D,這次發(fā)現(xiàn)BD段正常,可見故障在CD段,再到CD中點(diǎn)E來查。每查一次,可以把待查的線路長(zhǎng)度縮減一半,如此查下去,不用幾次,就能把故障點(diǎn)鎖定在一兩根電線桿附近。師:我們可以用一個(gè)動(dòng)態(tài)過程來展示一下(展示多媒體課件)。在一條線段上找某個(gè)特定點(diǎn),可以通過取中點(diǎn)的方法逐步縮小特定點(diǎn)所在的范圍(即二分法思想)。教師乙的教學(xué)過程:師:大家都看過李詠主持的《幸運(yùn)52》吧,今天咱也試一回(出示游戲:看商品、猜價(jià)格)。生:積極參與游戲,課堂氣氛活躍。師:競(jìng)猜中,"高了"、"低了"的含義是什么?如何確定價(jià)格的最可能的范圍?生:主持人"高了、低了"的回答是判斷價(jià)格所在區(qū)間的依據(jù)。師:如何才能更快的猜中商品的預(yù)定價(jià)格?生:回答各異。老師由此引導(dǎo)學(xué)生說出"二分法"的思想,并向同學(xué)們引出二分法的概念。問題:(1)分析兩種情景引入的特點(diǎn)。(2)結(jié)合案例,說明為什么要學(xué)習(xí)用二分法求方程的近似解。
案例:某教師在對(duì)根與系數(shù)關(guān)系綜合運(yùn)用教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:設(shè)α、β是方程x2-2kx+k+6=0的兩個(gè)實(shí)根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學(xué)生的解答過程如下:利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
高中"集合與函數(shù)概念實(shí)習(xí)作業(yè)"設(shè)定的教學(xué)目標(biāo)如下:①了解函數(shù)概念的形成、發(fā)展的歷史以及在這個(gè)過程中起重大作用的歷史事件和人物;②體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂;③在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識(shí)、社會(huì)實(shí)踐技能和民主價(jià)值觀。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)合理的課堂準(zhǔn)備;(2)確定本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn);(3)給出本節(jié)課的教學(xué)過程。