已知某個(gè)幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm)??傻贸鲞@個(gè)幾何體的體積是()cm3。
A.
B.
C.
D.
您可能感興趣的試卷
你可能感興趣的試題
在△ABC中,C=90°,且CA=CB=3,點(diǎn)M滿足,=()。
A.2
B.3
C.4
D.6
A.單調(diào)增大
B.單調(diào)減少
C.保持不變
D.增減不變
若,則在S1,S2,……,S100中,正數(shù)的個(gè)數(shù)是()。
A.16
B.72
C.86
D.100
為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息。設(shè)定原信息為a0a1a2,a∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中,,運(yùn)算規(guī)則為:,例如原信息為111,則傳輸信息為01111。傳輸信息在傳輸過(guò)程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是()。
A.11010
B.01100
C.10111
D.00011
A.θ>,m>n
B.θ>φ,m
C.θ<φ,m
D.θ<φ,m>n,
最新試題
高中"等差數(shù)列"設(shè)定的教學(xué)目標(biāo)如下:①通過(guò)實(shí)例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項(xiàng)公式;②能在具體的問(wèn)題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題,體會(huì)等差數(shù)列與一次函數(shù)的關(guān)系:③讓學(xué)生對(duì)日常生活中的實(shí)際問(wèn)題進(jìn)行分析,引導(dǎo)學(xué)生通過(guò)觀察,推導(dǎo),歸納抽象出等差數(shù)列的概念:由學(xué)生建立等差數(shù)列模型用相關(guān)知識(shí)解決一些簡(jiǎn)單的問(wèn)題,進(jìn)行等差數(shù)列通項(xiàng)公式應(yīng)用的實(shí)踐操作并在操作過(guò)程中,通過(guò)類比函數(shù)概念、性質(zhì)、表達(dá)式得到對(duì)等差數(shù)列相應(yīng)問(wèn)題的研究。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,給出至少三個(gè)實(shí)例,并說(shuō)明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,設(shè)計(jì)至少兩個(gè)問(wèn)題,讓學(xué)生用等差數(shù)列求解,并說(shuō)明設(shè)計(jì)意圖;(3)確定本節(jié)課的教學(xué)重點(diǎn);(4)作為高中階段的重點(diǎn)內(nèi)容,其難點(diǎn)是什么?(5)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
在高中數(shù)學(xué)課程中為什么要講微積分初步?
已知直線l:ax+y=1在矩陣對(duì)應(yīng)的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實(shí)數(shù)a,b的值;(2)若點(diǎn)P(x0,y0),在直線l上,且,求點(diǎn)P的坐標(biāo)。
高中"方程的根與函數(shù)的零點(diǎn)"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:①通過(guò)對(duì)二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會(huì)函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,②理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。③通過(guò)對(duì)現(xiàn)實(shí)問(wèn)題的分析,體會(huì)用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動(dòng)與靜的辨證關(guān)系。掌握函數(shù)零點(diǎn)存在性的判斷。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)問(wèn)題引入,并說(shuō)明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)問(wèn)題鏈(至少包含三個(gè)問(wèn)題),并說(shuō)明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個(gè)實(shí)例和三個(gè)問(wèn)題,并說(shuō)明設(shè)計(jì)意圖;(4)確定本節(jié)課的教學(xué)重點(diǎn);(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
已知a=1,b=2。(1)若a∥b,求a·b;(2)若a、b的夾角為60°,求a+b;(3)若a-b與a垂直,求當(dāng)k為何值時(shí),(ka-b)⊥(a+2b)。
案例:下面是一位老師在講"簡(jiǎn)單幾何體的三視圖"的教學(xué)片斷,請(qǐng)閱讀后回答問(wèn)題:創(chuàng)設(shè)問(wèn)題情境,從學(xué)生熟悉的古詩(shī)入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識(shí)廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩(shī)。師:哪位同學(xué)能說(shuō)說(shuō)蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠(yuǎn)看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W(xué)會(huì)納悶,今天老師上數(shù)學(xué)課怎么會(huì)念起古詩(shī)來(lái)?其實(shí),這首詩(shī)隱含著一些數(shù)學(xué)知識(shí)。它教會(huì)了我們?cè)鯓佑^察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡(jiǎn)單組合體的三視圖(寫板書)。問(wèn)題:(1)該教師的課堂引入有什么特色,對(duì)教學(xué)有什么好處?(2)簡(jiǎn)單談?wù)剶?shù)學(xué)教學(xué)過(guò)程中怎樣調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。
已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)D,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:(1)求C1、C2的標(biāo)準(zhǔn)方程:(2)請(qǐng)問(wèn)是否存在直線L滿足條件:①過(guò)C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N,且滿足若存在,求出直線L的方程;若不存在,說(shuō)明理由。
在三角形ABC中,∠BAC=90°,AB=AC,若點(diǎn)D在線段BC上,以AD為邊長(zhǎng)作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。(1)若點(diǎn)D在BC延長(zhǎng)線上,其他條件不變,寫出∠AFC,∠ACB,∠DAC的關(guān)系,并結(jié)合圖2給出證明。(2)若點(diǎn)D在CB延長(zhǎng)線上,其他條件不變,直接寫出∠AFC,∠ACB,∠DAC的關(guān)系式。
已知函數(shù)f(x)=x-alnx(a∈R)(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。
請(qǐng)以"直線與平面平行的判定"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo)(2)本節(jié)課的教學(xué)重、難點(diǎn)(3)寫出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計(jì)意圖