A.AC
B.ABC
C.AB-BC
D.AC+BC
您可能感興趣的試卷
你可能感興趣的試題
A.若|a+b|=|a|-|b|,則a⊥b
B.若a⊥b,則|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,則存在實(shí)數(shù)λ,使得a=λb
D.若存在實(shí)數(shù)λ,使得a=λb,則|a+b|=|a|-|b|
在直角三角形ABC中,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)P為線段CD的中點(diǎn),則()。
A.2
B.4
C.5
D.10
A.28
B.76
C.123
D.199
若,則sin2θ=()。
A.
B.
C.
D.
A.存在四邊相等的四邊形不是正方形
B.z1,z10∈C,為實(shí)數(shù)的充分必要條件是z1、z2互為共軛復(fù)數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N,Cn0+Cn1,…+Cnn:都是偶數(shù)
最新試題
在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為()海里。
已知等差數(shù)列{an}滿足:a3=7,a5+a7=26。{an}的前n項(xiàng)和為S。(1)求an及Sn;(2)令.求數(shù)列{bn}的前n項(xiàng)和Tn。
在高中數(shù)學(xué)課程中為什么要講微積分初步?
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為,且點(diǎn)A在直線l上。(1)求α的值及直線ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。
已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時(shí)a與b的夾角θ的值;(2)當(dāng)a·b取得最大值時(shí),求實(shí)數(shù)λ,使a+λb的值最小,并對這一結(jié)論作出幾何解釋。
請簡要描述數(shù)學(xué)應(yīng)用意識及推理能力的主要表現(xiàn)。
設(shè)f(x),g(x)在[a,b]上連續(xù),且滿足
設(shè)f(x),g(x)在[0,1]上的導(dǎo)數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有
案例:某教師在對根與系數(shù)關(guān)系綜合運(yùn)用教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:設(shè)α、β是方程x2-2kx+k+6=0的兩個實(shí)根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學(xué)生的解答過程如下:利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
已知,,(1)求tan2α的值:(2)求β。