不定積分xf″(x)dx等于()
A.xf′(x)-f′(x)+c
B.xf′(x)-f(x)+c
C.xf′(x)+f′(x)+c
D.xf′(x)+f(x)+c
您可能感興趣的試卷
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(一)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(二)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(二)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(三)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)模擬試題(三)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)模擬試題(四)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)模擬試題(四)
你可能感興趣的試題
不定積分等于()
A.
B.-
C.2
D.-2
若f(x)dx=F(x)+c,則sinxf(cosx)dx等于:()
A.F(sinx)+f
B.-F(sinx)+c
C.F(cosx)+c
D.-F(cosx)+c
如果f(x)=e-x,則[f′(lnx)/x]dx等于:()
A.-(1/x)+c
B.1/x+c
C.-lnx+c
D.1nx+c
A.(1nx/2)(2+lnx)+c
B.x+(1/2)x2+c
C.x+ex+c
D.ex+(1/2)e2x+c
A.-cosx+c
B.cosx+c
C.1/2(sin2x/2-x)+c
D.1/2(2sin2x-x)+c
設(shè)f′(cos2x)=sin2x,則f(x)等于()
A.cosx+1/2cos2x+c
B.cos2x-1/2cos4x+c
C.x+(1/2)x2+c
D.x-(1/2)x2+c
如果導(dǎo)式f(x)edx=-e+c,則函數(shù)f(x)等于()
A.-1/x
B.-(1/x2)
C.1/x
D.1/x2
設(shè)F(x)是f(x)的一個(gè)原函數(shù),則e-xf(e-x)dx等于下列哪一個(gè)函數(shù)()?
A.F(e-x)+c
B.-F(e-x)+c
C.F(ex)+c
D.-F(ex)+c
A.F′(x)dx=f(x)+c
B.f(x)dx=F(x)+c
C.F(x)dx=f(x)+c
D.f′(x)dx=F(x)+c
如果df(x)=dg(x),則下列各式中哪一個(gè)不一定成立()?
A.f(x)=g(x)
B.f′(x)=g′(x)
C.df(x)=dg(x)
D.df′(x)dx=dg′(x)dx
最新試題
的垂直漸進(jìn)線有()條
若連續(xù)函數(shù)y=f(x)在x0點(diǎn)不可導(dǎo),則曲線y=f(x)在(x0,f(x0))點(diǎn)沒有切線.
設(shè)D是由不等式|x|+|y|≤1所確定的有界區(qū)域,則二重積分|x|dxdy的值是:()
下列定積分為零的是()
微分方程的含有任意常數(shù)的解是該微分方程的通解。
設(shè)D是矩形區(qū)域:0≤x≤π/4,-1≤y≤1,則xcos2xydxdy等于:()
曲面z=y+lnx/z在點(diǎn)(1,1,1)處的法線方程是:()
設(shè)函數(shù) 在x=0處連續(xù),則a=()
曲線的漸近線的情況是()
若f(x)在x0點(diǎn)可指導(dǎo),則丨f(x)丨也在x0點(diǎn)可指導(dǎo)。