您可能感興趣的試卷
最新試題
取自某校畢業(yè)生的一個100人的簡單隨機樣本,有48人年收入不少于3萬元,估計該校畢業(yè)生中年收入不少于3萬元的所有畢業(yè)生的百分比。
為確保設備正常運轉(zhuǎn),需要配備適當數(shù)量的維修工人,現(xiàn)有同類型設備100臺,各臺工作相互獨立,每臺發(fā)生故障的概率都是0.01,在正常情況下,一臺設備出故障時一人即能處理,問至少應有幾名維修工人,才能以99%的把握保證設備出故障時不致因維修工人不足不能及時處理故障而影響生產(chǎn)?
某年級進行英語和計算機應用兩門課程的測驗,經(jīng)統(tǒng)計,英語的平均分數(shù)為80分,標準差為6分;計算機應用的平均分數(shù)為70分,標準差為9分。某學生英語考得85分,計算機應用考得80分,試問該生哪門課程成績在全年級相對較好?
某車間有200臺機床獨立工作,每臺機床在工作時間內(nèi)有70%的時間開動,每臺機床工作時需耗電1kw,問應供應多少電力才能有99.9%的把握保證該車間正常生產(chǎn)。
某車間有400臺同類型機器,工作相互獨立,每臺機器需要的電功率為θ瓦,由于工藝關系,每臺機器開動時間占工作總時間的3/4,問應該供應多少瓦電力才能以99%的概率保證車間有足夠的電功率?
設燈泡使用時數(shù)X~N(μ,σ2),為了估計期望μ和方差σ2,共測試了10個燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。
已知,求A+B,A-B,2A-B,AC,CA,ACB,AB′。
已知離散隨機變量X的分布列為,求E(X2),E(X-1)
樣本值:99.3,98.7,100.05,101.2,98.3,99.7,99.5,102.1,100.5,分別計算樣本平均值和樣本方差。
求下列矩陣的秩: