最新試題

求矩陣的逆矩陣:

題型:?jiǎn)柎痤}

某尋呼臺(tái)在1分鐘內(nèi)接到的呼喚次數(shù)服從參數(shù)λ=5的泊松分布,求在1分鐘內(nèi)接到6次呼喚的概率及接到呼喚不超過(guò)10次的概率。

題型:?jiǎn)柎痤}

對(duì)圓的直徑作近似測(cè)量,其值均勻分布在區(qū)間[a,b]上,求圓的面積的數(shù)學(xué)期望。

題型:?jiǎn)柎痤}

某中學(xué)的初一年級(jí)有500名學(xué)生,他們的某種能力指標(biāo)可以用正態(tài)分布來(lái)描述,現(xiàn)在按能力將他們分成A,B,C,D四個(gè)組參加一項(xiàng)測(cè)試,求各組的人數(shù)。

題型:?jiǎn)柎痤}

樣本值:99.3,98.7,100.05,101.2,98.3,99.7,99.5,102.1,100.5,分別計(jì)算樣本平均值和樣本方差。

題型:?jiǎn)柎痤}

某市一次全.市初三英語(yǔ)會(huì)考的考試成績(jī)可以用正態(tài)分布來(lái)描述,其平均成績(jī)?yōu)棣?70(分),標(biāo)準(zhǔn)差為σ=9(分)。一考生考得75分,求其超前百分位數(shù)。

題型:?jiǎn)柎痤}

取自某校畢業(yè)生的一個(gè)100人的簡(jiǎn)單隨機(jī)樣本,有48人年收入不少于3萬(wàn)元,估計(jì)該校畢業(yè)生中年收入不少于3萬(wàn)元的所有畢業(yè)生的百分比。

題型:?jiǎn)柎痤}

甲乙兩臺(tái)機(jī)床生產(chǎn)同一種零件,在全面質(zhì)量考核中,統(tǒng)計(jì)出甲乙機(jī)床每天出現(xiàn)次品數(shù)ξ、η的分布列分別為,如果兩臺(tái)機(jī)床的產(chǎn)量相同,試比較它們的生產(chǎn)質(zhì)量。

題型:?jiǎn)柎痤}

為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類型設(shè)備100臺(tái),各臺(tái)工作相互獨(dú)立,每臺(tái)發(fā)生故障的概率都是0.01,在正常情況下,一臺(tái)設(shè)備出故障時(shí)一人即能處理,問(wèn)至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時(shí)不致因維修工人不足不能及時(shí)處理故障而影響生產(chǎn)?

題型:?jiǎn)柎痤}

一顆均勻的骰子連續(xù)擲100次,求擲出點(diǎn)數(shù)之和在300到400之間的概率。

題型:?jiǎn)柎痤}