A.判定樹歸納
B.貝葉斯分類
C.后向傳播分類
D.基于案例的推理
您可能感興趣的試卷
你可能感興趣的試題
A.OLTP系統(tǒng)主要用于管理當(dāng)前數(shù)據(jù),而OLAP系統(tǒng)主要存放的是歷史數(shù)據(jù)
B.在數(shù)據(jù)的存取上,OLTP系統(tǒng)比OLAP系統(tǒng)有著更多的寫操作
C.對OLTP系統(tǒng)上的數(shù)據(jù)訪問量往往比對OLAP系統(tǒng)的數(shù)據(jù)訪問量要大得多
D.OLAP系統(tǒng)中往往存放的是匯總的數(shù)據(jù),而OLTP系統(tǒng)中往往存放詳細(xì)的數(shù)據(jù)
A.企業(yè)倉庫
B.數(shù)據(jù)集市
C.虛擬倉庫
D.信息倉庫
A.數(shù)據(jù)源
B.數(shù)據(jù)倉庫服務(wù)器
C.OLAP服務(wù)器
D.前端工具
A.信息處理
B.互聯(lián)網(wǎng)搜索
C.分析處理
D.數(shù)據(jù)挖掘
A.1-100M
B.100M-10G
C.10-1000G
D.100GB-數(shù)TB
最新試題
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來完成。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時(shí)間。
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
使用偏差較小的模型總是比偏差較大的模型更好。
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。