A.平滑
B.聚集
C.數(shù)據(jù)概化
D.規(guī)范化
您可能感興趣的試卷
你可能感興趣的試題
A.數(shù)據(jù)清理
B.數(shù)據(jù)集成
C.數(shù)據(jù)變換
D.數(shù)據(jù)歸約
A.去掉數(shù)據(jù)中的噪聲
B.對數(shù)據(jù)進(jìn)行匯總和聚集
C.使用概念分層,用高層次概念替換低層次“原始”數(shù)據(jù)
D.將屬性按比例縮放,使之落入一個小的特定區(qū)間
A.填補(bǔ)數(shù)據(jù)種的空缺值
B.集成多個數(shù)據(jù)源的數(shù)據(jù)
C.得到數(shù)據(jù)集的壓縮表示
D.規(guī)范化數(shù)據(jù)
A.概念分層
B.離散化
C.分箱
D.直方圖
A.孤立點(diǎn)
B.空缺值
C.測量變量中的隨即錯誤或偏差
D.數(shù)據(jù)變換引起的錯誤
最新試題
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計算機(jī)手段來完成。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
使用偏差較小的模型總是比偏差較大的模型更好。
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應(yīng)的存儲系統(tǒng)。
數(shù)據(jù)收集中的拉模式需要通過定時的方式不斷地觸發(fā),才能源源不斷地獲取對應(yīng)的數(shù)據(jù)。
隨機(jī)梯度下降每次更新執(zhí)行的計算量少于批梯度下降。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。
要將工作申請分為兩類,并使用密度估計來檢測離職申請人,我們可以使用生成分類器。