A.關(guān)聯(lián)分析
B.分類和預(yù)測
C.聚類分析
D.演變分析
您可能感興趣的試卷
你可能感興趣的試題
A.關(guān)聯(lián)分析
B.分類和預(yù)測
C.聚類分析
D.演變分析
A.關(guān)聯(lián)分析
B.分類和預(yù)測
C.演變分析
D.概念描述
A.選擇任務(wù)相關(guān)的數(shù)據(jù)
B.選擇要挖掘的知識類型
C.模式的興趣度度量
D.模式的可視化表示
A.關(guān)聯(lián)分析
B.分類和預(yù)測
C.孤立點分析
D.演變分析
E.概念描述
A.關(guān)聯(lián)分析
B.分類和預(yù)測
C.聚類分析
D.孤立點分析
E.演變分析
A.所涉及的算法的復(fù)雜性
B.所涉及的數(shù)據(jù)量
C.計算結(jié)果的表現(xiàn)形式
D.是否使用了人工智能技術(shù)
A.目標市場分析
B.購物籃分析
C.模式識別
D.信用卡欺詐檢測
A.二分K均值
B.MST
C.Chameleon
D.組平均
A.MIN(單鏈)
B.MAX(全鏈)
C.組平均
D.Chameleon
A.高維性
B.規(guī)模
C.稀疏性
D.噪聲和離群點
最新試題
由于決策樹學(xué)會了對離散值輸出而不是實值函數(shù)進行分類,因此它們不可能過度擬合。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計算機手段來完成。
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
通常,當試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
經(jīng)常跟管理層打交道并進行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項目的成功。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
要將工作申請分為兩類,并使用密度估計來檢測離職申請人,我們可以使用生成分類器。
數(shù)據(jù)存儲體系中并不牽扯計算機網(wǎng)絡(luò)這一環(huán)節(jié)。
當反向傳播算法運行到達到最小值時,無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。