單項選擇題已知sinθ+cosθ=m,tanθ+cotθ=n,則m與n的大小關(guān)系為()。

A.m2=n,
B.
C.
D.


您可能感興趣的試卷

最新試題

案例:某教師在對基本初等函數(shù)進(jìn)行教學(xué)時,給學(xué)生出了如下一道練習(xí)題:問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學(xué)思想方法。

題型:問答題

請以"直線與平面平行的判定"為課題,完成下列教學(xué)設(shè)計。(1)教學(xué)目標(biāo)(2)本節(jié)課的教學(xué)重、難點(3)寫出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計意圖

題型:問答題

如何處理面向全體學(xué)生與關(guān)注學(xué)生個體差異的關(guān)系?

題型:問答題

高中"方程的根與函數(shù)的零點"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:①通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點與相應(yīng)方程實數(shù)根之間的關(guān)系,②理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。③通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動與靜的辨證關(guān)系。掌握函數(shù)零點存在性的判斷。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計一個問題引入,并說明設(shè)計意圖;(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計問題鏈(至少包含三個問題),并說明設(shè)計意圖;(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個實例和三個問題,并說明設(shè)計意圖;(4)確定本節(jié)課的教學(xué)重點;(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點是什么?(6)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?

題型:問答題

案例:某教師在對根與系數(shù)關(guān)系綜合運用教學(xué)時,給學(xué)生出了如下一道練習(xí)題:設(shè)α、β是方程x2-2kx+k+6=0的兩個實根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學(xué)生的解答過程如下:利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學(xué)思想方法。

題型:問答題

在高中數(shù)學(xué)課程中為什么要講微積分初步?

題型:問答題

甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望。

題型:問答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系。已知點A的極坐標(biāo)為,直線l的極坐標(biāo)方程為,且點A在直線l上。(1)求α的值及直線ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。

題型:問答題

,(1)求An;(2)求(A+2E)n。

題型:問答題

案例:下面是一位老師在講"簡單幾何體的三視圖"的教學(xué)片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學(xué)生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學(xué)能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠(yuǎn)看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W(xué)會納悶,今天老師上數(shù)學(xué)課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學(xué)知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學(xué)有什么好處?(2)簡單談?wù)剶?shù)學(xué)教學(xué)過程中怎樣調(diào)動學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。

題型:問答題