設(shè)線性無關(guān)函數(shù)y1、y2、y3都是二階非齊次線性方程y″+P(x)y′+Q(x)y=f(x)的解,C1、C2是待定常數(shù)。則此方程的通解是:()
A.C1y1+C2y2+y3
B.C1y1+C2y2-(C1+C3)y3
C.C1y1+C2y2-(1-C1-C2)y3
D.C1y1+C2y2+(1-C1-C2)y3
您可能感興趣的試卷
你可能感興趣的試題
具有待定特解形式為y=A1x+A2+B1ex的微分方程是下列中哪個方程()?
A.y″+y′-2y=2+ex
B.y″-y′-2y=4x+2ex
C.y″-2y′+y=x+ex
D.y″-2y′=4+2ex
微分方程y″-6y′+9y=e3x(x+1)的特解形式應設(shè)為:()
A.xe3x(ax+B.
B.x2e3x(ax+B.
C.e3x(ax+B.
D.ae3xx3
A.Acosx+Bsinx
B.x(Acosx+Bsinx)
C.x2(Acosx+Bsinx)
D.(Ax2+B.sinx+Cxcosx
A.(Ax+B.cos2x+(Cx+D.sin2x
B.(Ax2+Bx)cos2x
C.Acos2x+Bsin2x
D.x(Ax+B.(cos2x+sin2x)
微分方程y″-y=ex+1的一個特解應具有下列中哪種形式(式中a、b為常數(shù))()?
A.aex+b
B.axex+bx
C.aex+bx
D.axex+b
微分方程y″-5y′+6y=xe2x的特解形式是:()
A.Ae2x+(Bx+C.
B.(Ax+B.e2x
C.x2(Ax+B.e2x
D.x(Ax+B.e2x
已知r1=3,r2=-3是方程y″+py′+q=0(p和q是常數(shù))的特征方程的兩個根,則該微分方程是下列中哪個方程()?
A.y″+9y′=0
B.y″-9y′=0
C.y″+9y=0
D.y″-9y=0
設(shè)f1(x)和f2(x)為二階常系數(shù)線性齊次微分方程y″+py′+g=0的兩個特解,若由f1(x)和f2(x)能構(gòu)成該方程的通解,下列哪個方程是其充分條件()?
A.f1(x)·f′2(x)-f2(x)f′1(x)=0
B.f1(x)·f′2(x)-f2(x)·f′1(x)≠0
C.f1(x)f′2(x)+f2(x)·f′1(x)=0
D.f1(x)f′2(x)+f2(x)f′1(x)≠0
A.y=f(x)+c
B.y=f(x)-+c
C.y=f(x)-1+c
D.y=f(x)-1+c
滿足方程f(x)+2f(x)dx=x2的解f(x)是:()
A.-(1/2)e-2x+x+1/2
B.(1/2)e-2x+x-1/2
C.ce-2x+x-1/2
D.ce-2x+x+1/2
最新試題
曲線x2=6y-y3在(-2,2)點切線的斜率為()
設(shè)D是兩個坐標軸和直線x+y=1所圍成的三角形區(qū)域,則xydσ的值為:()
設(shè)函數(shù)f(x)=丨x丨,則函數(shù)在點x=0處()
廣義積分e-2xdx=()
f(x)=x+在[0,4]上的最大值為()
下列定積分為零的是()
曲面xyz=1上平行于x+y+z+3=0的切平面方程是:()
若f(x)在x0點可指導,則丨f(x)丨也在x0點可指導。
若連續(xù)函數(shù)y=f(x)在x0點不可導,則曲線y=f(x)在(x0,f(x0))點沒有切線.
曲線的漸近線的情況是()